
HyConvE: A Novel Embedding Model for Knowledge Hypergraph
Link Prediction with Convolutional Neural Networks
Chenxu Wang

∗ Xin Wang

Zhao Li
College of Intelligence and College of Intelligence and College of Intelligence and

Computing Computing Computing
Tianjin University Tianjin University Tianjin University
Tianjin, China Tianjin, China Tianjin, China

Tianjin Key Laboratory of Cognitive Tianjin Key Laboratory of Cognitive Tianjin Key Laboratory of Cognitive
Computing and Application Computing and Application Computing and Application

Tianjin, China Tianjin, China Tianjin, China
cxwang1998@tju.edu.cn wangx@tju.edu.cn lizh@tju.edu.cn

Zirui Chen Jianxin Li
College of Intelligence and School of Information Technology

Computing Deakin University
Tianjin University Geelong, Victoria, Australia
Tianjin, China jianxin.li@deakin.edu.cn

Tianjin Key Laboratory of Cognitive
Computing and Application

Tianjin, China
zrchen@tju.edu.cn

ABSTRACT
Knowledge hypergraph embedding, which projects entities and �-ary
relations into a low-dimensional continuous vector space to predict
missing links, remains a challenging area to be explored despite the
ubiquity of �-ary relational facts in the real world. Currently, knowl-
edge hypergraph link prediction methods are essentially simple ex-
tensions of those used in knowledge graphs, where �-ary relational
facts are decomposed into diferent subelements. Convolutional
neural networks have been shown to have remarkable informa-

tion extraction capabilities in previous work on knowledge graph
link prediction. In this paper, we propose a novel embedding-based
knowledge hypergraph link prediction model named HyConvE,
which exploits the powerful learning ability of convolutional neu-
ral networks for efective link prediction. Specifcally, we employ
3D convolution to capture the deep interactions of entities and re-
lations to efciently extract explicit and implicit knowledge in each
�-ary relational fact without compromising its translation prop-
erty. In addition, appropriate relation and position-aware flters are
utilized sequentially to perform two-dimensional convolution op-
erations to capture the intrinsic patterns and position information
in each �-ary relation, respectively. Extensive experimental results

∗
Xin Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583256

on real datasets of knowledge hypergraphs and knowledge graphs
demonstrate the superior performance of HyConvE compared with
state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
Knowledge Hypergraph, Knowledge Graph, Link Prediction

ACM Reference Format:
Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, and Jianxin Li. 2023. Hy-
ConvE: A Novel Embedding Model for Knowledge Hypergraph Link Predic-
tion with Convolutional Neural Networks. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583256

1 INTRODUCTION
The recent development of knowledge graphs has been partly real-
izing the vision of the Semantic Web [3]. Knowledge graphs store
facts of the form � (ℎ, �), where � is the binary relation, and ℎ and �
are the head and tail entities, respectively. As the cornerstone of ar-
tifcial intelligence, recent years have witnessed the rapid adoption
of knowledge graphs in felds such as question and answer systems
[16], relation extraction [26], and recommender systems [6]. Never-
theless, in addition to binary relational facts, �-ary relational facts
involving more than two entities are also prevalent in reality, e.g., in
the Freebase[4], more than one-third of entities participate in non-
binary relations [38], and around 61% of relations are non-binary
[10]. These fndings demonstrate that knowledge hypergraphs,

188

https://orcid.org/0000-0001-5234-1454
https://orcid.org/0000-0001-9651-0651
https://orcid.org/0000-0003-3996-255X
https://orcid.org/0000-0002-7916-6745
https://orcid.org/0000-0002-9059-330X
https://doi.org/10.1145/3543507.3583256
https://doi.org/10.1145/3543507.3583256
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583256&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, Jianxin Li

PlayRoleIn

BestHelper
KidsOf

Position

Relation

Entity

Knowledge Hypergraph

Jeffrey Jordan and Marcus Jordan are kids of Michael Jordan.

Scottie Pippen is the best helper of Michael Jordan in 1998.

Michael Jordan plays as the scoring guard in Chicago Bulls.

1

Jeffrey

Jordan

1

Jeffrey

Jordan

2

Marcus

Jordan

2

Marcus

Jordan

1

Michael

Jordan
2

3

1

Michael

Jordan
2

3

2

Scoring

Guard

2

Scoring

Guard

3

Chicago

Bulls

3

Chicago

Bulls

3 19983 1998

1
Scottie

Pippen
1

Scottie

Pippen

Tuple

Statement

(Jeffrey Jordan, Marcus Jordan, Jeffrey Jordan)

(Scottie Pippen, Michael Jordan, 1998)

(Michael Jordan, Scoring Guard, Chicago Bulls)

KidsOf

BestHelper

PlayRoleIn

(Jeffrey Jordan, Marcus Jordan, Jeffrey Jordan)

(Scottie Pippen, Michael Jordan, 1998)

(Michael Jordan, Scoring Guard, Chicago Bulls)

KidsOf

BestHelper

PlayRoleIn

Figure 1: A real-world example of knowledge hypergraph
about a set of facts related to Michael Jordan, where each
tuple is accompanied by diferent positional information.

which use �-ary relation to describe relationships among several en-
tities, are ubiquitous in the real world. Figure 1 shows a real-world
example of a knowledge hypergraph about Michael Jordan. The
original facts can be represented by �-ary tuples, where each entity
in the �-ary relation appears in diferent positions. For example,
Michael Jordan is in the 1st, 2nd, and 3rd positions in the ternary re-
lation PlayRoleIn (Michael Jordan, Scoring Guard, Chicago Bulls),
BestHelperOf (Scottie Pippen, Michael Jordan, 1998), and KidsOf
(Jefrey Jordan, Marcus Jordan, Michael Jordan), respectively.

Like knowledge graphs, due to the exponential growth of multi-

source information, it becomes challenging, even impossible, for the
large-scale �-ary knowledge base to be updated in an appropriate
way, resulting in incomplete and outdated knowledge hypergraphs.
To address this issue, several approaches dedicated to knowledge
hypergraph link prediction have recently been emerging, out of
which the most representative approach is knowledge hypergraph
embedding. Early models [38, 41] use a star-to-clique method to
convert �-ary relations to several binary ones, which has proven
to be less efective due to the information loss [10]. Some mod-

els [13, 15, 22] represent �-ary facts in terms of role-value pairs,
i.e., {�1 : �1, �2 : �2, ..., �� : �� }, taking the correlation of role-value
pairs as the optimization goal. For example in Figure 1, Jefrey
Jordan and Marcus Jordan are children of Michael Jordan, which
are represented in the form of {daughter : Jefrey Jordan, son :
Marcus Jordan, father: Michael Jordan}. Following the triple mode
in knowledge graphs, there are also some approaches [14, 28] that
model the �-ary facts as {ℎ, �, �, �1 : �1, ..., ��−2 : ��−2 }, where the
�-ary facts are decomposed into a major triple and a series of
role-entity pairs to account the importance of head and tail en-
tities, while the compatibility between each role–entity pair and
the primary triple is independently calculated before a fnal aggre-
gation. For instance, the ternary relation BestHelperOf in Figure
1 can be represented as {Scottie Pippen, BestHelperOf, Michael Jor-
dan, time: 1998}. In other frameworks [8, 10, 21, 41], �-ary facts is
modeled as an �-ary relation with entities in diferent positions:
{�, �1, �2, ..., �� }. In Figure 1, the ternary relation PlayRoleIn can be
modeled as {PlayRoleIn, Michael Jordan, Scoring Guard, Chicago
Bulls}. Since there is no decomposition to break the original tu-
ple, the positional information and intrinsic patterns can be better

preserved. Similarly, the above methods learn the embeddings of
entities and relations in low-dimensional space and choose diferent
scoring functions for fact plausibility measurement. However, the
latent and implicit knowledge in the �-ary fact is unavailable for
these approaches due to their shallow modeling restrictions [7].

With the remarkable achievements of convolutional neural net-
works (CNNs) in computer vision and other felds, previous stud-
ies have also introduced CNNs to knowledge graph embedding.
ConvE[7] is the frst work to use 2D convolution for knowledge
graph link prediction. However, due to the simple stacking of enti-
ties and relations, solely using external 2D convolution flters can-
not capture the interactions between entities and relations well. Sub-
sequently, several representative works such as HypER [1], ConvR
[18], AcrE [27], and InteractE [34] emerge to further characterize
the interaction between entities and relations and get better results.
Nonetheless, these works often use complex convolutional layers,
resulting in a dense model structure. These models focus too much
on the extraction of implicit information, and their ability to capture
surface knowledge is weak due to the loss of translation property.

In this paper, we propose a novel convolution-based knowledge
hypergraph link prediction model called HyConvE, in which con-
volutions with distinct characteristics are jointly applied to the
knowledge hypergraph for diferent feature extraction. On the one
hand, to take advantage of the respective advantages of 1D and 2D
convolution, we transform the 1D convolution in ConvKB [24] and
the 2D convolution in ConvE [7] into 3D convolution for better fea-
ture extraction. Due to the preservation of the translation property,
surface knowledge will not be compromised when extracting deeper
interactions between entities and relations. On the other hand, in
the process of 2D convolution, when the entity embedding passes
through the relation-specifc and position-specifc flters, the inher-
ent patterns in the relations and the position (role) information of
the entities will be fully captured, respectively. Our model is evalu-
ated on nine standard benchmark datasets of both binary and �-ary.
Extensive experimental results show the superior performance com-

pared with a series of state-of-the-art knowledge embedding base-
line methods. Our main contributions are summarized as follows:

• Latent and surface knowledge extraction. HyConvE can
efectively capture feature interactions between relations
and related entities using the mechanism of 3D convolution,
which learns deeper features in each �-ary relational fact
without compromising translation property.

• Relation and position-aware information capture. Hy-
ConvE takes advantage of diferent 2D convolutional layers
to extract the inherent semantic patterns and position infor-
mation in each �-ary relation, making the features of each
tuple more informative for better performance.

• Better performance. Extensive experiments on both knowl-
edge hypergraph and knowledge graph datasets demonstrate
that HyConvE outperforms representative baselines over
standard benchmarks.

2 RELATED WORK

2.1 Knowledge Graph Embedding
Translational models. Translational methods such as TransE [5],
TransH [37], and TransR [20] use distance metrics to measure the

189

帅气的学长
Underline

HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks WWW ’23, April 30–May 04, 2023, Austin, TX, USA

fact plausibility by projecting the entities into low-dimensional
latent space. Later works such as TransC [23] and TransRHS [40]
are relation hierarchical structure (RHS) based methods aiming at
encoding the relation or entity concept as spheres for knowledge
graph embedding.
Tensor factorization based models. Tensor factorization based
approaches defne the scoring function as a bilinear product of en-
tity/relation embeddings. Concretely, the score function in RESCAL
[25] is defned as the multiplication of the head-tail entity vector
and relation matrix. DistMult [39] and ComplEx [33] use symmetric
relation matrices and complex-valued embedding spaces for op-
timization. RotatE [31] treats the relation as a rotation operation
when projecting head and tail entities into complex space, while
Tucker [2] and AutoSF [42] introduces tucker decomposition and
automated relation matrix into knowledge graph embedding, re-
spectively. These models have shallow and linear structures, result-
ing in incomplete extraction of implicit knowledge and inefcient
performance.
Neural network based models. Another line of knowledge graph
link prediction relies closely on the popularity of neural networks,
especially convolutional neural networks. ConvE [11], as the frst
convolution-based model, reshapes the head entity vector and rela-
tion vector and concatenates them into a matrix as the input of the
convolutional layer, and the triplet score is represented as the inner
product of the network output vector and the tail entity vector.
ConvKB [24] stacks the head and tail entities and relation vectors
as input to the 1D convolutional layer, which retains the translation
property in KG. ConvR [18] employs relation-specifc flters to deal
with the inadequacy of ConvE for interaction capture. HypER [1]
uses relation-specifc convolution flters generated by a fully con-
nected network to convolve the head entity embedding sufciently
but may come at the expense of extra amount of parameters. In-
teractE [34] further increases the interaction between relation and
entity embeddings by checkered feature reshaping and depthwise
circular convolution. AcrE [27] replaces the regular convolution fl-
ters with atrous flters to provide better performance and solve the
vanishing gradient problem through residual learning. In addition
to convolutional neural networks, R-GCN[29], and CompGCN[35]
are representative achievements of the combination of knowledge
graph and graph neural networks.

Since real-world knowledge often exists in the form of hyper-
graphs, the above models only designed for knowledge graphs have
limitations in modeling, the elaborate binary scoring functions
make them tricky to be adapted to �-ary relations. In contrast, Hy-
ConvE is not limited by the number of relations, and can perform
efective link prediction in mixed-arity knowledge hypergraphs.

2.2 Knowledge Hypergraph Embedding
Translational models. The earliest translation-based knowledge
hypergraph embedding methods are extensions of translational
approaches from binary relations to �-ary. m-TransH [38], as the
earliest model, is the extension of TransH [37] where the plausibility
score of each fact is a weighted sum of projected entities. RAE [41]
further employs a fully connected network (FCN) to model the
relatedness of all involved entities. However, these two models
cannot achieve ideal performance due to the weak expressiveness
of the translational framework.

Tensor factorization based models. GETD [21] extends Tucker
[2] as the tensor-factorization-based approach in knowledge hyper-
graphs. However, GETD can only be trained and evaluated with
fxed arity relations, hindering its real-world application. S2S [8]
further extends GETD from fxed to mixed-arity data in response to
this problem. HypE [10] is inspired by SimplE [19], which considers
position information in each fact with positional flters, while RAM
[22] attempts to model the semantics of each role in �-ary relation.
However, the above models always have shallow structures, which
may lead to insufcient latent and implicit knowledge extraction.
Neural network based models. NaLP [15] models the relatedness
of values based on the roles they play in diferent tuples, while
tNalp+[13] further considers type information and optimizes the
negative sampling. HINGE [28] and NeuInfer [14] are the follow-
ing works that decompose the �-ary relational fact into a primary
triplet and several role-entity pairs. StarE [12] uses CompGCN for
modeling triples of �-ary fact decompositions, focusing only on
modeling parts of �-ary facts. These works also use neural net-
works as a medium for information extraction. Nevertheless, due
to the overemphasis on the value of the primary triple, the seman-

tic features and structural integrity of the original �-ary facts are
inevitably destroyed through decomposition.

To the best of our knowledge, our proposed HyConvE is the
frst model that treats the �-ary fact as a tuple and makes full use
of diferent convolutional neural network properties to perform
efective link prediction for knowledge hypergraphs.

3 PROBLEM FORMULATION

3.1 Knowledge Hypergraph.
Given a fnite set of entities E, relations R, and observed tuples
T� , a knowledge hypergraph can be represented as H = (E, R, T�).
Each observed fact in T� is in the form of a tuple � = � (�1, �2, ..., ��),
where � is the non-negative arity of relation � representing the
number of entities involved within each relation. A knowledge
graph is a special case of a knowledge hypergraph where the arity
of all relations is two.

3.2 Knowledge Hypergraph Link Prediction.
Let T denote the set of ground truth tuples, where TO ⊆ TT .�
The knowledge hypergraph link prediction task aims at predicting
missing component in �-ary facts, where the missing component
can be either an entity in the tuple � (�1, �2, ..., ?, ..., ��) or an �-
ary relation ?(�1, �2, ..., ��). Knowledge hypergraph embedding is
one of the most efective methods for knowledge hypergraph link
prediction where an �-ary tuple � (�1, �2, ..., ��) is projected into a
low-dimensional latent space. The scoring function is optimized
iteratively to achieve higher probability scores for those real facts.

In subsequent sections, we use lowercase letters for scalars, bold
lowercase letters for vectors, and bold uppercase letters for matrices.
For the index, we denote a[i] as the �-th element of vector a, A[�, �]
as the [�, �]-th element of matrix A.

4 METHODOLOGY
The overall architecture of HyConvE is shown in Figure 2. The fnal
score of each �-ary fact consists of two feed-forward paths. On the
one hand, the 1D convolution in ConvKB and the 2D convolution

190

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, Jianxin Li

1

Michael

Jordan

1

Michael

Jordan

2

Scoring

Guard

2

Scoring

Guard

3

Chicago

Bulls

3

Chicago

Bulls

PlayRoleIn

4 64 6×4 6×

3 23 2×3 2×

2 52 5×2 5×

v1

dd

v1

d

q1q1

mr1

q1

mr1

q1q1

mr2

q1

mr2

q1q1

mr3

q1

mr3

wp1

n3

l3

n3

l3

wp1

n3

l3wpn

n3

l3

n3

l3

wpn

n3

l3

l2

d

n2

l2

d

n2

W1

l2

d

n2

W1

wrwr

v2

dd

v2

d

r

dd

r

d

e1

dd

e1

d

dd

e2

d

e2

dd

e3

d

e3

vec-1

reshape

d2

d1

m3

2 2

1 0

1

5

2 2

1 0

1

5

d2

d1

m3

2 2

1 0

1

5

d1
m2

3 1

1 0

2

1

3 1

1 0

2

1

d1
m2

3 1

1 0

2

1

m1

d1
1 3

0 4

2

6

1 3

0 4

2

6

m1

d1
1 3

0 4

2

6

d1d1

d2d2

3+1

A

3D kernal

flattenflattenflatten

flattenflatten

 element-wise

addition

score

2D convolutional path

3D convolutional path

non-linear

projection

projection

convolution

convolution

convolution

position-aware

filters

relation-aware

filters

maxpool
dropout

M1

M2

M3

M1

M2

M3

M1

M2

M3

45
0

68

1

247
5

4
9

M1

M2

M3

45
0

68

1

247
5

4
9

23
24

10

M1

M2

M3

45
0

68

1

247
5

4
9

23
24

10

maxpool
dropout

34
1

34
1

47
9

47
9

45
8

45
8

34
1

47
9

45
8

×

Figure 2: The framework of the HyConvE model.

in ConvE are extended to 3D convolution to capture the deeper
interactions of each relational fact without compromising the trans-
lation property, in which way the explicit and implicit knowledge
can be learned jointly. On the other hand, the 2D relation-aware
and position-aware convolution are employed successively to cap-
ture the position information and inherent pattern of entities in
each relation. Finally, we sum up the output features of two paths
through the element-wise addition and then convert the vector as
a scalar using a fully connected projection layer (linear operation)
as the fnal score of the input tuple. Specifcally, given an �-ary fact
� (�1, �2, ..., ��), we frst embed it as a �-dimension row vector � ∈
R�

and �� ∈ R� , � = 1, 2, ..., � .

4.1 Latent and Surface Knowledge Extraction
Considering that ConvE only stacks entries of the same dimen-

sion of the reshaped entity and relation matrices, entities and re-
lations interact only at the connections and lose their translation
property. We reshape the �-dimension vectors � and �� into ma-

trices (������) � ∈ R�1 ×�2
and �� ∈ R�1 ×�2 , � = 1, 2, ..., � , where

�1 × �2 = � . Then the � images is concatenated into a cube (�����)
� = [� | | �1, ..., | | ��] ∈ R(�+1)×�1 ×�2

, where � and ��, � = 1, 2, ..., �
denotes the reshaped vector. Note that in ConvKB, the embedding
vectors are simply stacked into a matrix of 3 rows and � columns
for 1D convolution, while we perform a reshape operation to make
the embedding representation more stereoscopic. Thanks to the
extension from image to ����� , the cube can be equated to a �����
with � + 1 frames of ������ , and 3D convolution can be naturally
applied for feature extraction. In the mixed-arity knowledge hyper-
graph, to ensure that the dimension of the feature maps output by
diferent �-ary facts through the convolution layer is consistent,
for a �-ary facts input, we employ �1 flters � ∈ R�1 ×(�+1)×� × �

that are repeatedly operated over every row of the cube � through
3D convolution layer and fnally generate a series of feature maps
�1,�2, ...,�� ∈ R�1 ×�2

which characterize the feature within the
neural space. Each feature map can be formulated as follows:

�� = �� ∗ A + � = � ∗ [� | | �1, ..., | | ��] (1)

where � ∈ R is a bias term and �� is the �-th feature map generated
by the �-th flter, and ∗ denotes the convolutional operation.

After passing the convolutional layer, we compress the feature
and simplify the network complexity through max-pooling followed
by the application of a dropout layer to fatten these feature maps
into a vector:

�1 = maxpool(� ∗ [� | | �1, ..., | | ��]) (2)

where �1 is the output features of 3D convolutional path and
maxpool denotes the max-pooling operation. It is worth noting
that after reshaping and stacking operations before 3D convolution,
both explicit and implicit features will be efectively captured and
the translational property will be maintained simultaneously.

4.2 Intrinsic Semantic Information Capture
As aforementioned, according to our modeling approach for the
�-ary facts, the intrinsic semantic information of an entity in each
�-ary relational fact is also closely related to the relation in the �-
ary tuple and its position (role) in the �-ary relation. Therefore, we
set up relation-aware and position-aware flters for feature extrac-
tion, respectively. Specifcally, for a �-ary tuple, we frst generate
the matrix of relation-specifc convolutional flters by passing the
relation embedding vector through a linear transformation matrix
W1, then result is reshaped to generate a matrix of convolutional
flters, the above process can be formulated as follows:

�� = vec−1 (� · W1) (3)

∈ R� ×�2�2
where W1 denotes the linear transformation matrix,
�2 the flter length, �2 the number of flters per relation. vec is a
vectorization of a matrix and vec−1

its inverse.
Given �2 the stride of relation-specifc convolution. Then, the

entity embeddings involved in the �-ary relation will be convolved
with that relation-specifc flter to obtain a series of relation-aware
entity feature maps ��� ∈ R�2 ×�2

, each of which can be formulated
as follows:

��� = �� ∗ �� = �� ∗ vec−1 (� · W1) (4)

where �2 = (� − �2)/� + 1 is the feature map size.
Let �3 denote the length of position-aware convolutional flters,

�3 the stride of position-aware convolution, and ��� ∈ R�3 ×�3
the

convolutional flters associated with each position in a tuple, where

191

HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks WWW ’23, April 30–May 04, 2023, Austin, TX, USA

�3 is the number of flters per position. For a given fact, all �3
feature maps corresponding to an entity are concatenated into a
vector �� of size �3 × �3: � �

Mi = ��� ∗ ���1 | | ��� ∗ ���2 | | ... | | ��� ∗ ����3 (5)

where �3 = (�2 − �3)/�3 + 1 is the size of position-aware feature map.
Thus, each entity embedding �� appearing at position � in a given
tuple is sequentially convolved with a relation-specifc flter and
a position-specifc flter to obtain a feature map of size �2. Finally,
the hidden vector is obtained after a max pooling process followed
by concatenating and fattening and projecting it through the trans-
formation matrix W2 to obtain the output of the 2D convolutional
path:

�2 = maxpool(vec([Mi | | M2 | | ... | | Mk]))W2 (6)

Eventually, we obtain the output characteristics of the tuple by
element-wise addition: � = �1+�2. After introducing the activation
function and randomly discarding some neurons to prevent overft-
ting, a fully connected projection layer W3 is added to confrm the
vector into a scalar as the fnal score of the input �-ary tuple. The
fnal tuple score given by the model can be formalized as:

����� = g(�1 + �2)W3 (7)

We use rectifed linear units, e.g., ReLU, as the nonlinear acti-
vation function g and apply batch normalization after each layer
to accelerate training and stabilize convergence. Some operations,
such as dropout [30] and batch normalization [17], are not described
in detail.

4.3 Joint Training
Using the scoring function obtained above, we designed the training
loss as well as the learning objective. In each learning iteration,
A batch of positive tuples is frst selected from the knowledge
hypergraph. Since we only have positive instances available, we
also need to train our model on the negative instance. Thus, we
develop a negative sampling strategy for knowledge hypergraph
link prediction. following the contrastive approach used in [5], for
each positive tuple, we produce a set of negative samples of size
� |� | by replacing each of the entities with � random entities in
the tuple: Ø� Ø�

N (�)
� ≡ {�1, · · · ,�̄ � , · · · ,�� ∉ F |�̄ � ∈ E, �̄ � ≠ �� } (8)

�=1 �=1

where N (�)
replaces the entity in the �-th position. Our model �

was trained using Stochastic Gradient Descent with mini-batches
and AdaGrad [9] for tuning the learning rate, by minimizing the
negative log-likelihood of the logistic model with L2 regularization: ∑
L = log(1+exp(�� (�1,...,��) · � (� (�1, ..., ��)))) +�

� (�1,...,��) ∈{H∪H′ }
(9)

′
where H and H represent the positive and negative sampling
tuple sets, respectively, and �� (�1,...,��) represents the label of the
tuple. �

1 for � (�1, ..., ��) ∈ H
� (�,�1,...,��) = −1 for � (�1, ..., ��) ∈ H ′

(10)

The regularization term � in Equation 9 consists of two parts:
squared norms of parameters of the several convolution layers,
max-pool layers, and fully connected layers in the two paths, and
squared norms of the entity and relation embeddings:

�∑
� = �(∥� ∥2

2 + ∥� ∥
2

2 + ∥�∥2
2 + ∥�� ∥2

2 + ∥� ∥2
(11)

2
�=1

Algorithm 1 summarizes the training procedure for HyConvE.
For each sampled fact, we frst obtain the negative samples. Then,
we compute the confdence scores for the sample tuples. Finally,
HyConvE is trained in a mini-batch fashion iteratively.

Due to space limitation, it can be observed from the convergence
curves of the model scalability experiments in Appendix A that
HyConvE can achieve optimal performance in fewer epochs. There-
fore, HyConvE can achieve better performance than other baseline
models when applied to large-scale knowledge hypergraphs.

Algorithm 1: Training procedure for HyConvE

Input: � -ary KHG H = (E, R, TO), the negative sampling
rate � , �iter=1000

Output: The score of each tuple
Init: � for � ∈ E, � for � ∈ R

1 for � = 1, · · · , �iter do
2 Sample a mini-batch F

batch ∈ F of size �� ;
3 for each � B {�, �1, �2, ..., �� } ∈ Fbatch do
4 Construct negative samples for fact � ;
5 �1 ← compute 3D convolutional vector using (2);
6 �2 ← compute 2D convolutional vector using (6);
7 ����� ← get the fnal score of the tuple (7);
8 end
9 Update learnable parameters w.r.t. gradients based on

the whole objective in (9);
10 end

5 EXPERIMENTS

5.1 Experimental setup
Dataset. To demonstrate the enhanced robustness and better gen-
eralization capabilities of HyConvE, we intensively delve into stan-
dard datasets in the relevant literature and select a representa-
tive of several widely used datasets. The experiments of knowl-
edge hypergraph link prediction were conducted on three common
benchmarks, i.e., JF17K [38], FB-AUTO [10], and WikiPeople [15].
WikiPeople is an �-ary knowledge hypergraph extracted from Wiki-

data [36] where all facts are related to people. The data in JF17K
and FB-AUTO are all from Freebase [4], among which the multi-

variate data in JF17K accounts for a larger proportion, while facts in
FB-AUTO are related to automotive. Since JF17K lacks a validation
set, we randomly select 20% of the training set as validation set.
Following the settings in GETD [21], experiments were also imple-

mented on 4 subsets extracted from WikiPeople and JF17K with
fxed arity, i.e., WikiPeople-3, WikiPeople-4, JF17K-3, and JF17K-4.
There are also four widely used benchmarks for knowledge graph
link prediction: FB15k-237 [32], WN18RR [7], FB15k [5], and WN18

192

Lila Lai
高亮文本

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, Jianxin Li

Table 1: Dataset Statistics. The size of the train, valid, and test columns represent the number of triples or tuples, respectively.
"Arity" denotes the involved arities of relations.

Dataset |E | |R | Arity # train # valid # test # arity=2 # arity=3 # arity=4 # arity ≥ 5

FB15k-237 14, 541 237 2 272, 115 17, 535 20, 466 310, 116 − − −
WN18RR 40, 943 11 2 86, 835 3, 034 3, 134 93, 003 − − −

JF17K 29, 177 327 2-6 61, 104 15, 275 24, 568 56, 332 34, 550 9, 509 2, 267
WikiPeople 47, 765 707 2-9 305, 725 38, 223 38, 281 337, 914 25, 820 15, 188 3, 307
FB-AUTO 3, 388 8 2, 4, 5 6, 778 2, 255 2, 180 3, 786 − 125 7, 212

JF17K-3 11, 541 104 3 27, 645 3, 454 3, 455 − 34, 544 − −
JF17K-4 6, 536 23 4 7, 607 951 951 − − 9509 −

WikiPeople-3 12, 270 66 3 20, 656 2, 582 2, 582 − 25, 820 − −
WikiPeople-4 9, 528 50 4 12, 150 1, 519 1, 519 − − 15188 −

Table 2: Results of Link Prediction on Knowledge Hypergraph Datasets. The best results are in boldface and the second best are
underlined. Experimental results with "-" are those results that were not presented in the original paper. All experimental
results are obtained locally.

Model JF17K WikiPeople FB-AUTO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

RAE [41] 0.392 0.312 0.433 0.561 0.253 0.118 0.343 0.463 0.703 0.614 0.764 0.854
NaLP [15] 0.310 0.239 0.334 0.450 0.338 0.272 0.362 0.466 0.672 0.611 0.712 0.774
HINGE[28] 0.473 0.397 0.490 0.618 0.333 0.259 0.361 0.477 0.678 0.630 0.706 0.765

NeuInfer [14] 0.451 0.373 0.484 0.604 0.351 0.274 0.381 0.467 0.737 0.700 0.755 0.805
HypE [10] 0.494 0.399 0.532 0.650 0.263 0.127 0.355 0.486 0.804 0.774 0.824 0.856
tNaLP+ [13] 0.449 0.370 0.484 0.598 0.339 0.269 0.369 0.473 0.729 0.645 0.748 0.826

S2S [8] 0.528 0.457 0.570 0.690 0.364 0.273 0.402 0.503 - - - -

RAM [22] 0.539 0.463 0.572 0.690 0.363 0.271 0.405 0.500 0.830 0.803 0.851 0.876
HyConvE (ours) 0.590 0.478 0.610 0.729 0.362 0.275 0.388 0.501 0.847 0.820 0.872 0.901

2 (42.4%) 3 (43.7%) 4 (10.5%) 5 (3.4%)
Testing Arity (Testing Ratio)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
R

R

JF17K
RAE
NaLP
HINGE
Neuinfer
HypE
RAM
HyConvE

2 (88.5%) 3 (6.9%) 4 (3.8%) 5 (0.6%)
Testing Arity (Testing Ratio)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
R

R

WikiPeople
RAE
NaLP
HINGE
Neuinfer
HypE
RAM
HyConvE

2 (35.1%) 4 (2.0%) 5 (62.0%)
Testing Arity (Testing Ratio)

0.0

0.2

0.4

0.6

0.8

M
R

R

FB-AUTO
RAE
NaLP
HINGE
Neuinfer
HypE
RAM
HyConvE

(a) JF17K (b) WikiPeople (c) FB-AUTO

Figure 3: Breakdown performance across relations with diferent arities. �-axis identifes the relation arity and the ratio of
testing samples. 6-ary relational facts and beyond are few and unreliable, thus not reported.

[5]. Despite their wide application to previous knowledge graph
link prediction tasks, FB15k and WN18 sufer from serious data
leakage problems, a logic rule-based link prediction model can eas-
ily achieve the best results on these two datasets according to [7],
so we drop them and choose the other two datasets as the main
validation benchmarks. The detailed statistics of the datasets are
summarized in Table 1.
Baselines. For the task of knowledge hypergraph link prediction,
we choose several state-of-the-art baselines, including translational
model RAE [41], tensor decomposition model GETD [21], n-CP [21],
n-Tucker [21], and S2S [8], and neural network based model HINGE

[28], NeuInfer [14], and HypE [10]. For the task of knowledge graph
link prediction, experiments were conducted with representative
models such as translational model TransE [5], tensor decomposi-

tion model DistMult [39], ComplEx [33], in addition, state-of-the-art
models HypE [10], RAM [22], and S2S [8] are also compared.
Evaluation Metrics. Similar to previous works, two metrics are uti-
lized for model evaluation, mean reciprocal rank (MRR) and Hit@k
(� = 1, 3, 10), respectively. Each entity is frst replaced by all entities
in the entity set to form a collection of candidate facts, among which
those facts that exist in the training/validation/test set are fltered.
Concretely, for each tuple � (�1, �2, ..., ��) in ����� and each position

193

HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks WWW ’23, April 30–May 04, 2023, Austin, TX, USA

within the tuple, |E | − 1 corrupted tuples are generated by replac-
ing �� with each of the entities in E\ {�� }. Then we score the given
tuple combined with the candidate set and sort their scores in de-
scending order. Let ����� (� (�� , ..., ��)) be the ranking of � (�� , ..., ��),

1 Í Í� 1
denote MRR as

� � (�� ,...,��) ∈����� �=1 ����� (� (�� ,...,��)) , where Í
� = , � is the number of prediction tasks. We count � (�� ,...,��) ∈�����
the number of tuples in the test set that score within the top k and
calculate the value of the Hit@k metric, which is a ratio determined
by the top � counts and the number of test set tuples.
Hyper-parameters. In our experiments, we set the learning rate
to 0.01, the batch size to 128, and the epochs to 500 for each dataset.
We fx the entity and relation embedding size to 400 dimensions.
In the 3D convolution path, we fx the output channel of the con-
volution flter to 6, the step size of the maximum pooling layer
to (2, 2, 1); in the 2D convolution, the size of the relation-specifc
flter and the position-specifc flter are 1 × 3 and 1 × 9, the step
size of the maximum pooling layer is (1, 2), the learning rate is se-
lected from 0.01, 0.005, 0.003, 0.001, 0.0005, and 0.0001, respectively.
Dropout is used for regularization, chosen from 0.0, 0.2, 0.3, and
0.4, respectively. The implementation of HyConvE is available at at
this GitHub link1.

5.2 Results on Knowledge Hypergraphs
5.2.1 Results on mixed arity fact. In the experiment of mix-arity
link prediction, facts with diferent arities are trained simultane-

ously. Results in the Table 2 shows the overall result of knowledge
hypergraph link prediction. Figure 3 reports the breakdown perfor-
mance on single-arity data.

According to Table 2, it can be seen that our model achieves a
signifcant performance improvement on the JF17K and FB-AUTO
datasets in comparison with all representative baselines. Specif-
cally, early methods NaLP and RAE are tricky with complex network
design and overftting. The worse performance shown by NeuInfer
and HINGE demonstrates the inevitable loss of structural and se-
mantic information due to the introduction of decomposition, the
inherent information in the original �-ary fact was broken, instead,
we treat the �-ary fact as a tuple and the information is preserved
more completely. Although works such as HypE and RAM also treat
�-ary facts as a whole, they only extract position (role) information
between entities within �-ary relations and hence perform poorly.
Translation-based models and tensor-factorization-based models
are able to extract surface semantic knowledge because they have
translation operations, such as addition and multiplication. How-
ever, they are incapable to capture the latent and implicit knowl-
edge due to their shallow structures. The overall better performance
demonstrates the capability and efectiveness of our proposed Hy-
ConvE for capturing and extracting various types of information
and knowledge. The breakdown performance of single-arity rela-
tion link prediction also shows the superiority of our proposed
model. HyConvE performs consistently well over diferent arities
on JF17K and FB-AUTO, while the relatively weak performance on
the higher-arity data of the WikiPeople dataset is due to the unbal-
anced data distribution in the dataset with the dramatically large
amount of sparsity in higher-arity relations shown in Appendix C.
Notably, the performance of HyConvE is signifcantly improved

1
https://github.com/CarllllWang/HyConvE/tree/master

over baselines for higher-arity relation (� > 2) per dataset, indicat-
ing that our model is able to adequately model the interaction of
entities and relations within �-ary facts, including the extraction
of surface and latent knowledge as well as the capture of position
information and inherent patterns.

5.2.2 Results on fixed arity fact. Under the fxed-arity design, the
facts of diferent arities are separated and trained independently,
and the robustness of the models refects in the superior perfor-
mance of link prediction in both mixed-arity and fxed-arity set-
tings. Besides, we also want to investigate whether the training of
mixed-arity relational data has a promising efect on the learning of
higher-arity relational data compared with single-arity relational
data. Relations over 5-ary have been fltered due to their spar-
sity. Experiments were performed on 4 widely used subsets, i.e.,
WikiPeople-3, WikiPeople-4, JF17K-3, and JF17K-4. The experimen-

tal results are presented in Table 3.
In particular, under the setting of fxed arity, the ternary and

quaternary relations in JF17K and WikiPeople are modeled by dif-
ferent convolution processes, respectively. The experimental results
demonstrate the modeling ability for HyConvE in fxed arity rela-
tions. Unlike NeuInfer, HINGE, and other methods that introduce
decomposition to break the �-ary facts, we treat the �-ary facts
as a tuple and model the compatibility of entities and relations by
scoring each tuple after two convolutional paths so that the orig-
inal information can be preserved more completely. The slightly
worse results for ternary relational data in WikiPeople-3 are mainly
afected by noise introduced by other relational data. Overall, Hy-
ConvE achieves better results in single-arity link prediction, demon-

strating the superiority of our method and the way �-ary facts are
handled. At the same time, it can be seen clearly from the results
that during the mixed-arity training process in WikiPeople, there
may be uneven distribution or noise among diferent arities of facts,
and thus the link prediction of each arity is not as good as those
under the fxed-arity setting.

5.3 Results on Knowledge Graphs
Since knowledge graph can be seen as a special case of knowledge
hypergraphs, to demonstrate the compatibility and robustness of
HyConvE in binary relational link prediction, we conducted ex-
periments on representative knowledge graph datasets FB15k-237,
WN18RR as well as the binary data in three knowledge hyper-
graph datasets. We take the representative translation-based model
TransE, tensor-factorization-based model DistMult, and ComplEx as
well as four knowledge hypergraph embedding model HypE, GETD,
S2S, and RAM. The experimental results are presented in Table 4.
Overall, HyConvE achieves fairly competitive performance on al-
most all metrics in almost all datasets. More importantly, HyConvE
outperforms all other baseline models on MRR metrics which is of
virtual importance in knowledge graph link prediction. Our pro-
posed HyConvE can efectively model binary relational facts and
can be well generalized to binary knowledge graphs, but due to the
lack of positional and semantic information contained in the binary
relations, compared with the excellent performance of our model on
the knowledge hypergraph datasets, the performance of HyConvE
is not signifcantly improved compared with the baselines.

194

https://github.com/CarllllWang/HyConvE/tree/master

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, Jianxin Li

Table 3: Results on fxed arity datasets. The best results are in boldface and the second best are underlined.

Model JF17K-3 JF17K-4 WikiPeople-3 WikiPeople-4

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

RAE [41]
NaLP [15]
n-CP [21]

n-tucker [21]
GETD [21]
RAM [22]

HyConvE (ours)

0.505
0.515
0.669
0.727
0.725
0.578
0.729

0.430
0.431
0.613
0.664
0.660
0.505
0.670

0.644
0.679
0.801
0.852
0.858
0.722
0.861

0.707
0.719
0.754
0.786
0.822
0.743
0.827

0.636
0.673
0.701
0.723
0.761
0.701
0.770

0.835
0.805
0.855
0.851
0.924
0.845
0.931

0.239
0.301
0.313
0.315
0.363
0.254
0.318

0.168
0.226
0.237
0.236
0.272
0.190
0.240

0.379
0.445
0.476
0.478
0.545
0.383
0.482

0.150
0.342
0.253
0.335
0.346
0.226
0.386

0.080
0.237
0.163
0.225
0.229
0.161
0.271

0.273
0.540
0.432
0.536
0.542
0.367
0.607

Table 4: Results of Link Prediction on Knowledge Graph Datasets. The best results are in boldface and the second best are
underlined. Experimental results with "-" are those results that were not presented in the original paper. All experimental
results are obtained locally.

Model FB15k-237 WN18RR JF17K WikiPeople FB-AUTO

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE [5]
DistMult[28]
ComplEx [14]
HypE [10]
S2S [8]

RAM [22]
HyConvE (ours)

0.294 - 0.561
0.241 0.155 0.419
0.253 0.158 0.428
0.240 0.160 0.400
0.348 0.256 0.540
- - -

0.339 0.212 0.458

0.226 - 0.501
0.431 0.390 0.490
0.440 0.411 0.512
0.363 0.332 0.473
0.498 0.455 0.577
- - -

0.461 0.432 0.534

0.276 0.167 0.495
0.228 0.144 0.411
0.308 0.219 0.498
- - -

- - -

0.324 0.232 0.515
0.338 0.246 0.525

0.312 0.146 0.574
0.275 0.193 0.388
0.326 0.232 0.461
- - -

- - -

0.408 0.313 0.568
0.388 0.281 0.556

0.313 0.132 0.562
0.494 0.444 0.566
0.487 0.442 0.568
- - -

- - -

0.489 0.444 0.576
0.493 0.445 0.572

Table 5: Results of ablation study. The best results are in boldface. HyConvE-path1-only means to use only the 3D path of
HyConvE when conducting experiments and HyConvE-path2-only means the other.

Model JF17K WikiPeople FB-AUTO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

HyConvE-path1-only
HyConvE-path2-only

HyConvE (ours)

0.528 0.457 0.570 0.690
0.102 0.054 0.094 0.168
0.590 0.478 0.610 0.729

0.323 0.227 0.344 0.478
0.072 0.048 0.094 0.172
0.352 0.275 0.388 0.501

0.831 0.796 0.851 0.899
0.145 0.082 0.164 0.212
0.847 0.820 0.872 0.901

5.4 Ablation study
Ablation experiments are essential to confrm the necessity of
two convolutional paths. We chose three knowledge hypergraph
datasets JF17K, FB-AUTO, and WikiPeople, to perform ablation
experiments with the same hyper-parameters. Experimental results
are presented in Table 5. When only using path 2 of HyConvE for
link prediction, we observe a decline in model performance on all
metrics. Specifcally, on the JF17K dataset, using 3D convolutional
path merely reduces the MRR by 6.2%, Hit@1 by 2.1%, Hit@3 by
4.0%, and Hit@10 by 3.9%. While on the FB-AUTO dataset, the
reduction of the evaluation metrics is relatively stable. This gap
highlights the efectiveness of 2D convolution, in which 2D relation-
aware and position-aware flters are utilized successively to capture
the intrinsic patterns and positional information in �-ary relations.
As a comparison, we also design experiments to demonstrate the
efectiveness of 3D convolutional path. Obviously, solely using the
2D convolutional path presents a signifcant gap in a series of eval-
uation metrics compared with the complete HyConvE, where MRR
is reduced from 0.847 to 0.145 in FB-AUTO, from 0.352 to 0.072 in
JF17K, and from 0.590 to 0.102 in WikiPeople, respectively. Overall,

the experimental results of the ablation study show that a slightly
competitive performance can be obtained using only the 3D con-
volutional path. But its fnal link prediction results are still worse
than the complete HyConvE model due to the lack of relation and
position information, while only using the 2D convolutional path
leads to a dramatic drop in all metrics. Therefore, it is obvious that
only the combination of 2D and 3D convolution of HyConvE can
achieve best performance.

6 CONCLUSION
In this paper, we propose a novel convolutional-based embedding
model for knowledge hypergraph link prediction called HyConvE.
Considering the drawbacks of existing approaches, we fully ex-
ploits the characteristics of convolutional neural networks in knowl-
edge hypergraph embedding. We use 3D convolution to extract the
deeper interaction while preserving the translational property of
entities and relations. While in the 2D convolutional process, we
employee relation-specifc and position-specifc flters to capture
the corresponding features. For future work, we will consider to
leverage adjacent tuples for more structural information.

195

HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
This work was supported in part by The National Key R&D Pro-
gram of China (2020AAA0108504), the National Natural Science
Foundation of China (61972275), CAAI-Huawei MindSpore Open
Fund (2022037A), and the Australian Research Council Linkage
Project (LP180100750).

REFERENCES
[1] Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Hypernetwork

knowledge graph embeddings. In International Conference on Artifcial Neural
Networks. Springer, 553–565.

[2] Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Tucker: Tensor
factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590
(2019).

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The semantic web.
Scientifc american 284, 5 (2001), 34–43.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. 1247–1250.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[6] Robin Burke. 2000. Knowledge-based recommender systems. Encyclopedia of
library and information systems 69, Supplement 32 (2000), 175–186.

[7] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
conference on artifcial intelligence, Vol. 32.

[8] Shimin Di, Quanming Yao, and Lei Chen. 2021. Searching to sparsify tensor
decomposition for n-ary relational data. In Proceedings of the Web Conference
2021. 4043–4054.

[9] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research 12, 7 (2011).

[10] Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. 2019.
Knowledge hypergraphs: Prediction beyond binary relations. arXiv preprint
arXiv:1906.00137 (2019).

[11] Wenying Feng, Daren Zha, Lei Wang, and Xiaobo Guo. 2022. Convolutional 3D
Embedding for Knowledge Graph Completion. In 2022 IEEE 25th International
Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE,
1197–1202.

[12] Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens
Lehmann. 2020. Message passing for hyper-relational knowledge graphs. arXiv
preprint arXiv:2009.10847 (2020).

[13] Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo none Wang, and Xueqi Cheng.
2021. Link prediction on n-ary relational data based on relatedness evaluation.
IEEE Transactions on Knowledge and Data Engineering (2021).

[14] Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng.
2020. Neuinfer: Knowledge inference on n-ary facts. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. 6141–6151.

[15] Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link
prediction on n-ary relational data. In The World Wide Web Conference. 583–593.

[16] Jiale Han, Bo Cheng, and Xu Wang. 2021. Two-phase hypergraph based reasoning
with dynamic relations for multi-hop KBQA. In Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artifcial Intelligence.
3615–3621.

[17] Sergey Iofe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[18] Xiaotian Jiang, Quan Wang, and Bin Wang. 2019. Adaptive convolution for
multi-relational learning. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). 978–987.

[19] Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link predic-
tion in knowledge graphs. Advances in neural information processing systems 31
(2018).

[20] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artifcial intelligence.

[21] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing tensor decomposition
for n-ary relational knowledge bases. In Proceedings of The Web Conference 2020.
1104–1114.

[22] Yu Liu, Quanming Yao, and Yong Li. 2021. Role-aware modeling for n-ary
relational knowledge bases. In Proceedings of the Web Conference 2021. 2660–
2671.

[23] Xin Lv, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2018. Diferentiating concepts
and instances for knowledge graph embedding. arXiv preprint arXiv:1811.04588
(2018).

[24] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. 2017. A
novel embedding model for knowledge base completion based on convolutional
neural network. arXiv preprint arXiv:1712.02121 (2017).

[25] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way
model for collective learning on multi-relational data. In Icml.

[26] Meng Qu, Xiang Ren, Yu Zhang, and Jiawei Han. 2018. Weakly-supervised
relation extraction by pattern-enhanced embedding learning. In Proceedings of
the 2018 World Wide Web Conference. 1257–1266.

[27] Feiliang Ren, Juchen Li, Huihui Zhang, Shilei Liu, Bochao Li, Ruicheng Ming,
and Yujia Bai. 2020. Knowledge graph embedding with atrous convolution and
residual learning. arXiv preprint arXiv:2010.12121 (2020).

[28] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets:
hyper-relational knowledge graph embedding for link prediction. In Proceedings
of The Web Conference 2020. 1885–1896.

[29] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[30] Nitish Srivastava, Geofrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overftting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[31] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[32] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-
hury, and Michael Gamon. 2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015 conference on empirical methods
in natural language processing. 1499–1509.

[33] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[34] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha
Talukdar. 2020. Interacte: Improving convolution-based knowledge graph embed-

dings by increasing feature interactions. In Proceedings of the AAAI conference on
artifcial intelligence, Vol. 34. 3009–3016.

[35] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-based multi-relational graph convolutional networks. arXiv preprint
arXiv:1911.03082 (2019).

[36] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[37] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artifcial Intelligence, Vol. 28.

[38] Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On
the representation and embedding of knowledge bases beyond binary relations.
arXiv preprint arXiv:1604.08642 (2016).

[39] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-

bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[40] Fuxiang Zhang, Xin Wang, Zhao Li, and Jianxin Li. 2020. TransRHS: A Repre-
sentation Learning Method for Knowledge Graphs with Relation Hierarchical
Structure.. In IJCAI. 2987–2993.

[41] Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance
reconstruction in knowledge bases via relatedness afliated embedding. In Pro-
ceedings of the 2018 World Wide Web Conference. 1185–1194.

[42] Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei Chen. 2020. AutoSF:
Searching scoring functions for knowledge graph embedding. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 433–444.

196

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, Jianxin Li

A CONVERGENCE CURVE
To make the comparison more vivid, we visualize the performance
of HyConvE, RAM, and HypE models on the validation set on two
datasets, JF17K and FB-AUTO.

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8

M
R

R

0.8390.811

0.800

HyConvE
RAM
HypE

0 100 200 300 400 500

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
R

R

0.808
0.775

0.770

HyConvE
RAM
HypE

(a) MRR (b) Hit@1

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8

M
R

R

0.8580.837

0.823

HyConvE
RAM
HypE

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8

M
R

R

0.9010.880

0.856

HyConvE
RAM
HypE

(c) Hit@3 (d) Hit@10

Figure 4: Comparison on the validation performance vs. train-
ing epoches of HyConvE, HypE, RAM in FB-AUTO.

0 50 100 150 200 250 300

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

M
R

R

0.490

0.440

0.444

HyConvE
RAM
HypE

0 50 100 150 200 250 300

Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
R

R

0.396
0.361

0.349

HyConvE
RAM
HypE

(a) MRR (b) Hit@1

0 50 100 150 200 250 300

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

M
R

R

0.532

0.473

0.477

HyConvE
RAM
HypE

0 50 100 150 200 250 300

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
R

R

0.675

0.598

0.599

HyConvE
RAM
HypE

(c) Hit@3 (d) Hit@10

Figure 5: Comparison on the validation performance vs. train-
ing epoches of HyConvE, HypE, RAM in JF17K.

The results are shown in Figure 4 and 5, respectively. We can
clearly observe that HyConvE outperforms the other models on all
metrics throughout the validation process of both FB-AUTO and
JF17K datasets. From Figure 4, it can be seen that RAM reaches
convergence in the fastest number of iterations (about 100), and the
model performance gradually decreases after 100 iterations, with
its best MRR, Hit@1, Hit@3, and Hit@10 being 0.811, 0.775, 0.837,
0.880, respectively. In contrast, the performance of HyConvE and
HypE continues to grow steadily with the number of iterations,
even after 100 iterations.

B CONVOLUTION QUANTITATIVE ANALYSIS
In addition to the regular link prediction task, we also conducted
quantitative analysis experiments on the FB-AUTO dataset. The
variables to be explored are: the reshaping dimension, the number
of 3D flters, and the diferent activation functions, respectively.
These experiments are conducted on the FB-AUTO dataset for 500
epochs. (1) Figure 6(a) shows that model performance does not
change signifcantly with diferent reshape dimensions. Note that
in HyConvE the 3D convolution form is essential rather than the
specifc image shape (reshape dimension). (2) Figure 6(b) shows
that simply increasing the number of flters does not result in bet-
ter performance. When the number of flters is set to 6, the MRR
reaches a maximum value of 0.837. (3) Figure 6(c) shows the most
competitive activation function in HyConvE is Relu. This indicates
that it is vital to select the proper activation function for training a
good convolution model.

d1=8, d2=50 d1=10, d2=40 d1=20, d2=20 d1=40, d2=10 d1=50, d2=8

Reshape Dimension

0.0

0.2

0.4

0.6

0.8

1.0

M
R

R

0.836 0.833 0.837 0.830 0.841

6 8 16 32 64 128

Number of Filters

0.78

0.79

0.80

0.81

0.82

0.83

M
R

R

0.837

0.830

0.794
0.792

0.788

0.779

(a) Reshape Dimension (b) Number of Filters

Sigmoid Tanh Relu LeakyRelu

Activation Function

0.828

0.830

0.832

0.834

0.836

M
R

R

0.827

0.833

0.837

0.834

(c) Activation Function

Figure 6: The efects of 3 convolution parameters.

197

HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks WWW ’23, April 30–May 04, 2023, Austin, TX, USA

2 3 4 5 6 7 8 9

Arity

0

50000

100000

150000

200000

250000

A
m

ou
nt

270179

20509
12319

2039 607 43 26 3

Training Set

2 3 4 5 6 7 8 9

Arity

0

5000

10000

15000

20000

25000

30000

35000

A
m

ou
nt

33845

2669
1422

230 56 1 0 0

Validation Set

2 3 4 5 6 7 8 9

Arity

0

5000

10000

15000

20000

25000

30000

35000

A
m

ou
nt

33890

2642
1447

245 55 1 1 0

Test Set

(a) Training Set (b) Validation Set (c) Test Set

Figure 7: Distribution of relational data of diferent arities in the WikiPeople dataset.

C DATASET ANALYSIS data dominating (88.5%). Since the binary relational data contains
less semantic and position information, our model is not as efective

The distribution of relational data of diferent arities in the WikiPeo-

in the WikiPeople dataset compared with that in the JF17K and
ple dataset is given in Figure 7. It can be seen that the distribution

FB-AUTO datasets.
of data in the WikiPeople dataset is uneven, with binary relational

198

	Abstract
	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Embedding
	2.2 Knowledge Hypergraph Embedding

	3 Problem Formulation
	3.1 Knowledge Hypergraph.
	3.2 Knowledge Hypergraph Link Prediction.

	4 Methodology
	4.1 Latent and Surface Knowledge Extraction
	4.2 Intrinsic Semantic Information Capture
	4.3 Joint Training

	5 Experiments
	5.1 Experimental setup
	5.2 Results on Knowledge Hypergraphs
	5.3 Results on Knowledge Graphs
	5.4 Ablation study

	6 Conclusion
	Acknowledgments
	References
	A Convergence Curve
	B Convolution Quantitative Analysis
	C Dataset Analysis

