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ABSTRACT 
Knowledge hypergraph embedding, which projects entities and �-ary 
relations into a low-dimensional continuous vector space to predict 
missing links, remains a challenging area to be explored despite the 
ubiquity of �-ary relational facts in the real world. Currently, knowl-
edge hypergraph link prediction methods are essentially simple ex-
tensions of those used in knowledge graphs, where �-ary relational 
facts are decomposed into diferent subelements. Convolutional 
neural networks have been shown to have remarkable informa-

tion extraction capabilities in previous work on knowledge graph 
link prediction. In this paper, we propose a novel embedding-based 
knowledge hypergraph link prediction model named HyConvE, 
which exploits the powerful learning ability of convolutional neu-
ral networks for efective link prediction. Specifcally, we employ 
3D convolution to capture the deep interactions of entities and re-
lations to efciently extract explicit and implicit knowledge in each 
�-ary relational fact without compromising its translation prop-
erty. In addition, appropriate relation and position-aware flters are 
utilized sequentially to perform two-dimensional convolution op-
erations to capture the intrinsic patterns and position information 
in each �-ary relation, respectively. Extensive experimental results 
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on real datasets of knowledge hypergraphs and knowledge graphs 
demonstrate the superior performance of HyConvE compared with 
state-of-the-art baselines. 
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1 INTRODUCTION 
The recent development of knowledge graphs has been partly real-
izing the vision of the Semantic Web [3]. Knowledge graphs store 
facts of the form � (ℎ, �), where � is the binary relation, and ℎ and � 
are the head and tail entities, respectively. As the cornerstone of ar-
tifcial intelligence, recent years have witnessed the rapid adoption 
of knowledge graphs in felds such as question and answer systems 
[16], relation extraction [26], and recommender systems [6]. Never-
theless, in addition to binary relational facts, �-ary relational facts 
involving more than two entities are also prevalent in reality, e.g., in 
the Freebase[4], more than one-third of entities participate in non-
binary relations [38], and around 61% of relations are non-binary 
[10]. These fndings demonstrate that knowledge hypergraphs, 
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Figure 1: A real-world example of knowledge hypergraph 
about a set of facts related to Michael Jordan, where each 
tuple is accompanied by diferent positional information. 

which use �-ary relation to describe relationships among several en-
tities, are ubiquitous in the real world. Figure 1 shows a real-world 
example of a knowledge hypergraph about Michael Jordan. The 
original facts can be represented by �-ary tuples, where each entity 
in the �-ary relation appears in diferent positions. For example, 
Michael Jordan is in the 1st, 2nd, and 3rd positions in the ternary re-
lation PlayRoleIn (Michael Jordan, Scoring Guard, Chicago Bulls), 
BestHelperOf (Scottie Pippen, Michael Jordan, 1998), and KidsOf 
(Jefrey Jordan, Marcus Jordan, Michael Jordan), respectively. 

Like knowledge graphs, due to the exponential growth of multi-

source information, it becomes challenging, even impossible, for the 
large-scale �-ary knowledge base to be updated in an appropriate 
way, resulting in incomplete and outdated knowledge hypergraphs. 
To address this issue, several approaches dedicated to knowledge 
hypergraph link prediction have recently been emerging, out of 
which the most representative approach is knowledge hypergraph 
embedding. Early models [38, 41] use a star-to-clique method to 
convert �-ary relations to several binary ones, which has proven 
to be less efective due to the information loss [10]. Some mod-

els [13, 15, 22] represent �-ary facts in terms of role-value pairs, 
i.e., {�1 : �1, �2 : �2, ..., �� : �� }, taking the correlation of role-value 
pairs as the optimization goal. For example in Figure 1, Jefrey 
Jordan and Marcus Jordan are children of Michael Jordan, which 
are represented in the form of {daughter : Jefrey Jordan, son : 
Marcus Jordan, father: Michael Jordan}. Following the triple mode 
in knowledge graphs, there are also some approaches [14, 28] that 
model the �-ary facts as {ℎ, �, �, �1 : �1, ..., ��−2 : ��−2 }, where the 
�-ary facts are decomposed into a major triple and a series of 
role-entity pairs to account the importance of head and tail en-
tities, while the compatibility between each role–entity pair and 
the primary triple is independently calculated before a fnal aggre-
gation. For instance, the ternary relation BestHelperOf in Figure 
1 can be represented as {Scottie Pippen, BestHelperOf, Michael Jor-
dan, time: 1998}. In other frameworks [8, 10, 21, 41], �-ary facts is 
modeled as an �-ary relation with entities in diferent positions: 
{�, �1, �2, ..., �� }. In Figure 1, the ternary relation PlayRoleIn can be 
modeled as {PlayRoleIn, Michael Jordan, Scoring Guard, Chicago 
Bulls}. Since there is no decomposition to break the original tu-
ple, the positional information and intrinsic patterns can be better 

preserved. Similarly, the above methods learn the embeddings of 
entities and relations in low-dimensional space and choose diferent 
scoring functions for fact plausibility measurement. However, the 
latent and implicit knowledge in the �-ary fact is unavailable for 
these approaches due to their shallow modeling restrictions [7]. 

With the remarkable achievements of convolutional neural net-
works (CNNs) in computer vision and other felds, previous stud-
ies have also introduced CNNs to knowledge graph embedding. 
ConvE[7] is the frst work to use 2D convolution for knowledge 
graph link prediction. However, due to the simple stacking of enti-
ties and relations, solely using external 2D convolution flters can-
not capture the interactions between entities and relations well. Sub-
sequently, several representative works such as HypER [1], ConvR 
[18], AcrE [27], and InteractE [34] emerge to further characterize 
the interaction between entities and relations and get better results. 
Nonetheless, these works often use complex convolutional layers, 
resulting in a dense model structure. These models focus too much 
on the extraction of implicit information, and their ability to capture 
surface knowledge is weak due to the loss of translation property. 

In this paper, we propose a novel convolution-based knowledge 
hypergraph link prediction model called HyConvE, in which con-
volutions with distinct characteristics are jointly applied to the 
knowledge hypergraph for diferent feature extraction. On the one 
hand, to take advantage of the respective advantages of 1D and 2D 
convolution, we transform the 1D convolution in ConvKB [24] and 
the 2D convolution in ConvE [7] into 3D convolution for better fea-
ture extraction. Due to the preservation of the translation property, 
surface knowledge will not be compromised when extracting deeper 
interactions between entities and relations. On the other hand, in 
the process of 2D convolution, when the entity embedding passes 
through the relation-specifc and position-specifc flters, the inher-
ent patterns in the relations and the position (role) information of 
the entities will be fully captured, respectively. Our model is evalu-
ated on nine standard benchmark datasets of both binary and �-ary. 
Extensive experimental results show the superior performance com-

pared with a series of state-of-the-art knowledge embedding base-
line methods. Our main contributions are summarized as follows: 

• Latent and surface knowledge extraction. HyConvE can 
efectively capture feature interactions between relations 
and related entities using the mechanism of 3D convolution, 
which learns deeper features in each �-ary relational fact 
without compromising translation property. 

• Relation and position-aware information capture. Hy-
ConvE takes advantage of diferent 2D convolutional layers 
to extract the inherent semantic patterns and position infor-
mation in each �-ary relation, making the features of each 
tuple more informative for better performance. 

• Better performance. Extensive experiments on both knowl-
edge hypergraph and knowledge graph datasets demonstrate 
that HyConvE outperforms representative baselines over 
standard benchmarks. 

2 RELATED WORK 

2.1 Knowledge Graph Embedding 
Translational models. Translational methods such as TransE [5], 
TransH [37], and TransR [20] use distance metrics to measure the 
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fact plausibility by projecting the entities into low-dimensional 
latent space. Later works such as TransC [23] and TransRHS [40] 
are relation hierarchical structure (RHS) based methods aiming at 
encoding the relation or entity concept as spheres for knowledge 
graph embedding. 
Tensor factorization based models. Tensor factorization based 
approaches defne the scoring function as a bilinear product of en-
tity/relation embeddings. Concretely, the score function in RESCAL 
[25] is defned as the multiplication of the head-tail entity vector 
and relation matrix. DistMult [39] and ComplEx [33] use symmetric 
relation matrices and complex-valued embedding spaces for op-
timization. RotatE [31] treats the relation as a rotation operation 
when projecting head and tail entities into complex space, while 
Tucker [2] and AutoSF [42] introduces tucker decomposition and 
automated relation matrix into knowledge graph embedding, re-
spectively. These models have shallow and linear structures, result-
ing in incomplete extraction of implicit knowledge and inefcient 
performance. 
Neural network based models. Another line of knowledge graph 
link prediction relies closely on the popularity of neural networks, 
especially convolutional neural networks. ConvE [11], as the frst 
convolution-based model, reshapes the head entity vector and rela-
tion vector and concatenates them into a matrix as the input of the 
convolutional layer, and the triplet score is represented as the inner 
product of the network output vector and the tail entity vector. 
ConvKB [24] stacks the head and tail entities and relation vectors 
as input to the 1D convolutional layer, which retains the translation 
property in KG. ConvR [18] employs relation-specifc flters to deal 
with the inadequacy of ConvE for interaction capture. HypER [1] 
uses relation-specifc convolution flters generated by a fully con-
nected network to convolve the head entity embedding sufciently 
but may come at the expense of extra amount of parameters. In-
teractE [34] further increases the interaction between relation and 
entity embeddings by checkered feature reshaping and depthwise 
circular convolution. AcrE [27] replaces the regular convolution fl-
ters with atrous flters to provide better performance and solve the 
vanishing gradient problem through residual learning. In addition 
to convolutional neural networks, R-GCN[29], and CompGCN[35] 
are representative achievements of the combination of knowledge 
graph and graph neural networks. 

Since real-world knowledge often exists in the form of hyper-
graphs, the above models only designed for knowledge graphs have 
limitations in modeling, the elaborate binary scoring functions 
make them tricky to be adapted to �-ary relations. In contrast, Hy-
ConvE is not limited by the number of relations, and can perform 
efective link prediction in mixed-arity knowledge hypergraphs. 

2.2 Knowledge Hypergraph Embedding 
Translational models. The earliest translation-based knowledge 
hypergraph embedding methods are extensions of translational 
approaches from binary relations to �-ary. m-TransH [38], as the 
earliest model, is the extension of TransH [37] where the plausibility 
score of each fact is a weighted sum of projected entities. RAE [41] 
further employs a fully connected network (FCN) to model the 
relatedness of all involved entities. However, these two models 
cannot achieve ideal performance due to the weak expressiveness 
of the translational framework. 

Tensor factorization based models. GETD [21] extends Tucker 
[2] as the tensor-factorization-based approach in knowledge hyper-
graphs. However, GETD can only be trained and evaluated with 
fxed arity relations, hindering its real-world application. S2S [8] 
further extends GETD from fxed to mixed-arity data in response to 
this problem. HypE [10] is inspired by SimplE [19], which considers 
position information in each fact with positional flters, while RAM 
[22] attempts to model the semantics of each role in �-ary relation. 
However, the above models always have shallow structures, which 
may lead to insufcient latent and implicit knowledge extraction. 
Neural network based models. NaLP [15] models the relatedness 
of values based on the roles they play in diferent tuples, while 
tNalp+[13] further considers type information and optimizes the 
negative sampling. HINGE [28] and NeuInfer [14] are the follow-
ing works that decompose the �-ary relational fact into a primary 
triplet and several role-entity pairs. StarE [12] uses CompGCN for 
modeling triples of �-ary fact decompositions, focusing only on 
modeling parts of �-ary facts. These works also use neural net-
works as a medium for information extraction. Nevertheless, due 
to the overemphasis on the value of the primary triple, the seman-

tic features and structural integrity of the original �-ary facts are 
inevitably destroyed through decomposition. 

To the best of our knowledge, our proposed HyConvE is the 
frst model that treats the �-ary fact as a tuple and makes full use 
of diferent convolutional neural network properties to perform 
efective link prediction for knowledge hypergraphs. 

3 PROBLEM FORMULATION 

3.1 Knowledge Hypergraph. 
Given a fnite set of entities E, relations R, and observed tuples 
T� , a knowledge hypergraph can be represented as H = (E, R, T� ). 
Each observed fact in T� is in the form of a tuple � = � (�1, �2, ..., �� ), 
where � is the non-negative arity of relation � representing the 
number of entities involved within each relation. A knowledge 
graph is a special case of a knowledge hypergraph where the arity 
of all relations is two. 

3.2 Knowledge Hypergraph Link Prediction. 
Let T denote the set of ground truth tuples, where TO ⊆ TT .� 
The knowledge hypergraph link prediction task aims at predicting 
missing component in �-ary facts, where the missing component 
can be either an entity in the tuple � (�1, �2, ..., ?, ..., �� ) or an �-
ary relation ?(�1, �2, ..., �� ). Knowledge hypergraph embedding is 
one of the most efective methods for knowledge hypergraph link 
prediction where an �-ary tuple � (�1, �2, ..., �� ) is projected into a 
low-dimensional latent space. The scoring function is optimized 
iteratively to achieve higher probability scores for those real facts. 

In subsequent sections, we use lowercase letters for scalars, bold 
lowercase letters for vectors, and bold uppercase letters for matrices. 
For the index, we denote a[i] as the �-th element of vector a, A[�, �]
as the [�, �]-th element of matrix A. 

4 METHODOLOGY 
The overall architecture of HyConvE is shown in Figure 2. The fnal 
score of each �-ary fact consists of two feed-forward paths. On the 
one hand, the 1D convolution in ConvKB and the 2D convolution 
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Figure 2: The framework of the HyConvE model. 

in ConvE are extended to 3D convolution to capture the deeper 
interactions of each relational fact without compromising the trans-
lation property, in which way the explicit and implicit knowledge 
can be learned jointly. On the other hand, the 2D relation-aware 
and position-aware convolution are employed successively to cap-
ture the position information and inherent pattern of entities in 
each relation. Finally, we sum up the output features of two paths 
through the element-wise addition and then convert the vector as 
a scalar using a fully connected projection layer (linear operation) 
as the fnal score of the input tuple. Specifcally, given an �-ary fact 
� (�1, �2, ..., �� ), we frst embed it as a �-dimension row vector � ∈ 
R� 

and �� ∈ R� , � = 1, 2, ..., � . 

4.1 Latent and Surface Knowledge Extraction 
Considering that ConvE only stacks entries of the same dimen-

sion of the reshaped entity and relation matrices, entities and re-
lations interact only at the connections and lose their translation 
property. We reshape the �-dimension vectors � and �� into ma-

trices (������) � ∈ R�1 ×�2 
and �� ∈ R�1 ×�2 , � = 1, 2, ..., � , where 

�1 × �2 = � . Then the � images is concatenated into a cube (�����)
� = [� | | �1, ..., | | �� ] ∈ R(�+1)×�1 ×�2

, where � and ��, � = 1, 2, ..., � 
denotes the reshaped vector. Note that in ConvKB, the embedding 
vectors are simply stacked into a matrix of 3 rows and � columns 
for 1D convolution, while we perform a reshape operation to make 
the embedding representation more stereoscopic. Thanks to the 
extension from image to ����� , the cube can be equated to a ����� 
with � + 1 frames of ������ , and 3D convolution can be naturally 
applied for feature extraction. In the mixed-arity knowledge hyper-
graph, to ensure that the dimension of the feature maps output by 
diferent �-ary facts through the convolution layer is consistent, 
for a �-ary facts input, we employ �1 flters � ∈ R�1 ×(�+1)×� × � 

that are repeatedly operated over every row of the cube � through 
3D convolution layer and fnally generate a series of feature maps 
�1,�2, ...,�� ∈ R�1 ×�2 

which characterize the feature within the 
neural space. Each feature map can be formulated as follows: 

�� = �� ∗ A + � = � ∗ [� | | �1, ..., | | �� ] (1) 

where � ∈ R is a bias term and �� is the �-th feature map generated 
by the �-th flter, and ∗ denotes the convolutional operation. 

After passing the convolutional layer, we compress the feature 
and simplify the network complexity through max-pooling followed 
by the application of a dropout layer to fatten these feature maps 
into a vector: 

�1 = maxpool(� ∗ [� | | �1, ..., | | �� ]) (2) 

where �1 is the output features of 3D convolutional path and 
maxpool denotes the max-pooling operation. It is worth noting 
that after reshaping and stacking operations before 3D convolution, 
both explicit and implicit features will be efectively captured and 
the translational property will be maintained simultaneously. 

4.2 Intrinsic Semantic Information Capture 
As aforementioned, according to our modeling approach for the 
�-ary facts, the intrinsic semantic information of an entity in each 
�-ary relational fact is also closely related to the relation in the �-
ary tuple and its position (role) in the �-ary relation. Therefore, we 
set up relation-aware and position-aware flters for feature extrac-
tion, respectively. Specifcally, for a �-ary tuple, we frst generate 
the matrix of relation-specifc convolutional flters by passing the 
relation embedding vector through a linear transformation matrix 
W1, then result is reshaped to generate a matrix of convolutional 
flters, the above process can be formulated as follows: 

�� = vec−1 (� · W1) (3) 

∈ R� ×�2�2
where W1 denotes the linear transformation matrix, 
�2 the flter length, �2 the number of flters per relation. vec is a 
vectorization of a matrix and vec−1 

its inverse. 
Given �2 the stride of relation-specifc convolution. Then, the 

entity embeddings involved in the �-ary relation will be convolved 
with that relation-specifc flter to obtain a series of relation-aware 
entity feature maps ��� ∈ R�2 ×�2

, each of which can be formulated 
as follows: 

��� = �� ∗ �� = �� ∗ vec−1 (� · W1) (4) 

where �2 = (� − �2)/� + 1 is the feature map size. 
Let �3 denote the length of position-aware convolutional flters, 

�3 the stride of position-aware convolution, and ��� ∈ R�3 ×�3 
the 

convolutional flters associated with each position in a tuple, where 
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�3 is the number of flters per position. For a given fact, all �3 
feature maps corresponding to an entity are concatenated into a 
vector �� of size �3 × �3: � � 

Mi = ��� ∗ ���1 | | ��� ∗ ���2 | | ... | | ��� ∗ ����3 (5) 

where �3 = (�2 − �3)/�3 + 1 is the size of position-aware feature map. 
Thus, each entity embedding �� appearing at position � in a given 
tuple is sequentially convolved with a relation-specifc flter and 
a position-specifc flter to obtain a feature map of size �2. Finally, 
the hidden vector is obtained after a max pooling process followed 
by concatenating and fattening and projecting it through the trans-
formation matrix W2 to obtain the output of the 2D convolutional 
path: 

�2 = maxpool(vec( [Mi | | M2 | | ... | | Mk]))W2 (6) 

Eventually, we obtain the output characteristics of the tuple by 
element-wise addition: � = �1+�2. After introducing the activation 
function and randomly discarding some neurons to prevent overft-
ting, a fully connected projection layer W3 is added to confrm the 
vector into a scalar as the fnal score of the input �-ary tuple. The 
fnal tuple score given by the model can be formalized as: 

����� = g(�1 + �2)W3 (7) 

We use rectifed linear units, e.g., ReLU, as the nonlinear acti-
vation function g and apply batch normalization after each layer 
to accelerate training and stabilize convergence. Some operations, 
such as dropout [30] and batch normalization [17], are not described 
in detail. 

4.3 Joint Training 
Using the scoring function obtained above, we designed the training 
loss as well as the learning objective. In each learning iteration, 
A batch of positive tuples is frst selected from the knowledge 
hypergraph. Since we only have positive instances available, we 
also need to train our model on the negative instance. Thus, we 
develop a negative sampling strategy for knowledge hypergraph 
link prediction. following the contrastive approach used in [5], for 
each positive tuple, we produce a set of negative samples of size 
� |� | by replacing each of the entities with � random entities in 
the tuple: Ø� Ø� 

N (� )
� ≡ {�1, · · · ,�̄  � , · · · ,�� ∉ F |�̄  � ∈ E, �̄  � ≠ �� } (8) 

�=1 �=1 

where N (� ) 
replaces the entity in the �-th position. Our model � 

was trained using Stochastic Gradient Descent with mini-batches 
and AdaGrad [9] for tuning the learning rate, by minimizing the 
negative log-likelihood of the logistic model with L2 regularization: ∑ 
L = log(1+exp(�� (�1,...,�� ) · � (� (�1, ..., �� )))) +� 

� (�1,...,�� ) ∈{H∪H′ } 
(9) 

′
where H and H represent the positive and negative sampling 
tuple sets, respectively, and �� (�1,...,�� ) represents the label of the 
tuple. � 

1 for � (�1, ..., �� ) ∈ H 
� (�,�1,...,�� ) = −1 for � (�1, ..., �� ) ∈ H ′ 

(10) 

The regularization term � in Equation 9 consists of two parts: 
squared norms of parameters of the several convolution layers, 
max-pool layers, and fully connected layers in the two paths, and 
squared norms of the entity and relation embeddings: 

�∑ 
� = �(∥� ∥2

2 + ∥� ∥
2

2 + ∥�∥2
2 + ∥�� ∥2

2 + ∥� ∥2 
(11)

2 
�=1 

Algorithm 1 summarizes the training procedure for HyConvE. 
For each sampled fact, we frst obtain the negative samples. Then, 
we compute the confdence scores for the sample tuples. Finally, 
HyConvE is trained in a mini-batch fashion iteratively. 

Due to space limitation, it can be observed from the convergence 
curves of the model scalability experiments in Appendix A that 
HyConvE can achieve optimal performance in fewer epochs. There-
fore, HyConvE can achieve better performance than other baseline 
models when applied to large-scale knowledge hypergraphs. 

Algorithm 1: Training procedure for HyConvE 

Input: � -ary KHG H = (E, R, TO), the negative sampling 
rate � , �iter=1000 

Output: The score of each tuple 
Init: � for � ∈ E, � for � ∈ R 

1 for � = 1, · · · , �iter do 
2 Sample a mini-batch F

batch ∈ F of size �� ; 
3 for each � B {�, �1, �2, ..., �� } ∈ Fbatch do 
4 Construct negative samples for fact � ; 
5 �1 ← compute 3D convolutional vector using (2); 
6 �2 ← compute 2D convolutional vector using (6); 
7 ����� ← get the fnal score of the tuple (7); 
8 end 
9 Update learnable parameters w.r.t. gradients based on 

the whole objective in (9); 
10 end 

5 EXPERIMENTS 

5.1 Experimental setup 
Dataset. To demonstrate the enhanced robustness and better gen-
eralization capabilities of HyConvE, we intensively delve into stan-
dard datasets in the relevant literature and select a representa-
tive of several widely used datasets. The experiments of knowl-
edge hypergraph link prediction were conducted on three common 
benchmarks, i.e., JF17K [38], FB-AUTO [10], and WikiPeople [15]. 
WikiPeople is an �-ary knowledge hypergraph extracted from Wiki-

data [36] where all facts are related to people. The data in JF17K 
and FB-AUTO are all from Freebase [4], among which the multi-

variate data in JF17K accounts for a larger proportion, while facts in 
FB-AUTO are related to automotive. Since JF17K lacks a validation 
set, we randomly select 20% of the training set as validation set. 
Following the settings in GETD [21], experiments were also imple-

mented on 4 subsets extracted from WikiPeople and JF17K with 
fxed arity, i.e., WikiPeople-3, WikiPeople-4, JF17K-3, and JF17K-4. 
There are also four widely used benchmarks for knowledge graph 
link prediction: FB15k-237 [32], WN18RR [7], FB15k [5], and WN18 
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Table 1: Dataset Statistics. The size of the train, valid, and test columns represent the number of triples or tuples, respectively. 
"Arity" denotes the involved arities of relations. 

Dataset |E | |R | Arity # train # valid # test # arity=2 # arity=3 # arity=4 # arity ≥ 5 

FB15k-237 14, 541 237 2 272, 115 17, 535 20, 466 310, 116 − − − 
WN18RR 40, 943 11 2 86, 835 3, 034 3, 134 93, 003 − − − 

JF17K 29, 177 327 2-6 61, 104 15, 275 24, 568 56, 332 34, 550 9, 509 2, 267 
WikiPeople 47, 765 707 2-9 305, 725 38, 223 38, 281 337, 914 25, 820 15, 188 3, 307 
FB-AUTO 3, 388 8 2, 4, 5 6, 778 2, 255 2, 180 3, 786 − 125 7, 212 

JF17K-3 11, 541 104 3 27, 645 3, 454 3, 455 − 34, 544 − − 
JF17K-4 6, 536 23 4 7, 607 951 951 − − 9509 − 

WikiPeople-3 12, 270 66 3 20, 656 2, 582 2, 582 − 25, 820 − − 
WikiPeople-4 9, 528 50 4 12, 150 1, 519 1, 519 − − 15188 − 

Table 2: Results of Link Prediction on Knowledge Hypergraph Datasets. The best results are in boldface and the second best are 
underlined. Experimental results with "-" are those results that were not presented in the original paper. All experimental 
results are obtained locally. 

Model JF17K WikiPeople FB-AUTO 

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 

RAE [41] 0.392 0.312 0.433 0.561 0.253 0.118 0.343 0.463 0.703 0.614 0.764 0.854 
NaLP [15] 0.310 0.239 0.334 0.450 0.338 0.272 0.362 0.466 0.672 0.611 0.712 0.774 
HINGE[28] 0.473 0.397 0.490 0.618 0.333 0.259 0.361 0.477 0.678 0.630 0.706 0.765 

NeuInfer [14] 0.451 0.373 0.484 0.604 0.351 0.274 0.381 0.467 0.737 0.700 0.755 0.805 
HypE [10] 0.494 0.399 0.532 0.650 0.263 0.127 0.355 0.486 0.804 0.774 0.824 0.856 
tNaLP+ [13] 0.449 0.370 0.484 0.598 0.339 0.269 0.369 0.473 0.729 0.645 0.748 0.826 

S2S [8] 0.528 0.457 0.570 0.690 0.364 0.273 0.402 0.503 - - - -

RAM [22] 0.539 0.463 0.572 0.690 0.363 0.271 0.405 0.500 0.830 0.803 0.851 0.876 
HyConvE (ours) 0.590 0.478 0.610 0.729 0.362 0.275 0.388 0.501 0.847 0.820 0.872 0.901 
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Figure 3: Breakdown performance across relations with diferent arities. �-axis identifes the relation arity and the ratio of 
testing samples. 6-ary relational facts and beyond are few and unreliable, thus not reported. 

[5]. Despite their wide application to previous knowledge graph 
link prediction tasks, FB15k and WN18 sufer from serious data 
leakage problems, a logic rule-based link prediction model can eas-
ily achieve the best results on these two datasets according to [7], 
so we drop them and choose the other two datasets as the main 
validation benchmarks. The detailed statistics of the datasets are 
summarized in Table 1. 
Baselines. For the task of knowledge hypergraph link prediction, 
we choose several state-of-the-art baselines, including translational 
model RAE [41], tensor decomposition model GETD [21], n-CP [21], 
n-Tucker [21], and S2S [8], and neural network based model HINGE 

[28], NeuInfer [14], and HypE [10]. For the task of knowledge graph 
link prediction, experiments were conducted with representative 
models such as translational model TransE [5], tensor decomposi-

tion model DistMult [39], ComplEx [33], in addition, state-of-the-art 
models HypE [10], RAM [22], and S2S [8] are also compared. 
Evaluation Metrics. Similar to previous works, two metrics are uti-
lized for model evaluation, mean reciprocal rank (MRR) and Hit@k 
(� = 1, 3, 10), respectively. Each entity is frst replaced by all entities 
in the entity set to form a collection of candidate facts, among which 
those facts that exist in the training/validation/test set are fltered. 
Concretely, for each tuple � (�1, �2, ..., �� ) in ����� and each position 

193



HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

within the tuple, |E | − 1 corrupted tuples are generated by replac-
ing �� with each of the entities in E\ {�� }. Then we score the given 
tuple combined with the candidate set and sort their scores in de-
scending order. Let ����� (� (�� , ..., �� )) be the ranking of � (�� , ..., �� ), 

1 Í Í� 1
denote MRR as 

� � (�� ,...,�� ) ∈����� �=1 ����� (� (�� ,...,�� ) ) , where Í 
� = , � is the number of prediction tasks. We count � (�� ,...,�� ) ∈����� 
the number of tuples in the test set that score within the top k and 
calculate the value of the Hit@k metric, which is a ratio determined 
by the top � counts and the number of test set tuples. 
Hyper-parameters. In our experiments, we set the learning rate 
to 0.01, the batch size to 128, and the epochs to 500 for each dataset. 
We fx the entity and relation embedding size to 400 dimensions. 
In the 3D convolution path, we fx the output channel of the con-
volution flter to 6, the step size of the maximum pooling layer 
to (2, 2, 1); in the 2D convolution, the size of the relation-specifc 
flter and the position-specifc flter are 1 × 3 and 1 × 9, the step 
size of the maximum pooling layer is (1, 2), the learning rate is se-
lected from 0.01, 0.005, 0.003, 0.001, 0.0005, and 0.0001, respectively. 
Dropout is used for regularization, chosen from 0.0, 0.2, 0.3, and 
0.4, respectively. The implementation of HyConvE is available at at 
this GitHub link1. 

5.2 Results on Knowledge Hypergraphs 
5.2.1 Results on mixed arity fact. In the experiment of mix-arity 
link prediction, facts with diferent arities are trained simultane-

ously. Results in the Table 2 shows the overall result of knowledge 
hypergraph link prediction. Figure 3 reports the breakdown perfor-
mance on single-arity data. 

According to Table 2, it can be seen that our model achieves a 
signifcant performance improvement on the JF17K and FB-AUTO 
datasets in comparison with all representative baselines. Specif-
cally, early methods NaLP and RAE are tricky with complex network 
design and overftting. The worse performance shown by NeuInfer 
and HINGE demonstrates the inevitable loss of structural and se-
mantic information due to the introduction of decomposition, the 
inherent information in the original �-ary fact was broken, instead, 
we treat the �-ary fact as a tuple and the information is preserved 
more completely. Although works such as HypE and RAM also treat 
�-ary facts as a whole, they only extract position (role) information 
between entities within �-ary relations and hence perform poorly. 
Translation-based models and tensor-factorization-based models 
are able to extract surface semantic knowledge because they have 
translation operations, such as addition and multiplication. How-
ever, they are incapable to capture the latent and implicit knowl-
edge due to their shallow structures. The overall better performance 
demonstrates the capability and efectiveness of our proposed Hy-
ConvE for capturing and extracting various types of information 
and knowledge. The breakdown performance of single-arity rela-
tion link prediction also shows the superiority of our proposed 
model. HyConvE performs consistently well over diferent arities 
on JF17K and FB-AUTO, while the relatively weak performance on 
the higher-arity data of the WikiPeople dataset is due to the unbal-
anced data distribution in the dataset with the dramatically large 
amount of sparsity in higher-arity relations shown in Appendix C. 
Notably, the performance of HyConvE is signifcantly improved 

1
https://github.com/CarllllWang/HyConvE/tree/master 

over baselines for higher-arity relation (� > 2) per dataset, indicat-
ing that our model is able to adequately model the interaction of 
entities and relations within �-ary facts, including the extraction 
of surface and latent knowledge as well as the capture of position 
information and inherent patterns. 

5.2.2 Results on fixed arity fact. Under the fxed-arity design, the 
facts of diferent arities are separated and trained independently, 
and the robustness of the models refects in the superior perfor-
mance of link prediction in both mixed-arity and fxed-arity set-
tings. Besides, we also want to investigate whether the training of 
mixed-arity relational data has a promising efect on the learning of 
higher-arity relational data compared with single-arity relational 
data. Relations over 5-ary have been fltered due to their spar-
sity. Experiments were performed on 4 widely used subsets, i.e., 
WikiPeople-3, WikiPeople-4, JF17K-3, and JF17K-4. The experimen-

tal results are presented in Table 3. 
In particular, under the setting of fxed arity, the ternary and 

quaternary relations in JF17K and WikiPeople are modeled by dif-
ferent convolution processes, respectively. The experimental results 
demonstrate the modeling ability for HyConvE in fxed arity rela-
tions. Unlike NeuInfer, HINGE, and other methods that introduce 
decomposition to break the �-ary facts, we treat the �-ary facts 
as a tuple and model the compatibility of entities and relations by 
scoring each tuple after two convolutional paths so that the orig-
inal information can be preserved more completely. The slightly 
worse results for ternary relational data in WikiPeople-3 are mainly 
afected by noise introduced by other relational data. Overall, Hy-
ConvE achieves better results in single-arity link prediction, demon-

strating the superiority of our method and the way �-ary facts are 
handled. At the same time, it can be seen clearly from the results 
that during the mixed-arity training process in WikiPeople, there 
may be uneven distribution or noise among diferent arities of facts, 
and thus the link prediction of each arity is not as good as those 
under the fxed-arity setting. 

5.3 Results on Knowledge Graphs 
Since knowledge graph can be seen as a special case of knowledge 
hypergraphs, to demonstrate the compatibility and robustness of 
HyConvE in binary relational link prediction, we conducted ex-
periments on representative knowledge graph datasets FB15k-237, 
WN18RR as well as the binary data in three knowledge hyper-
graph datasets. We take the representative translation-based model 
TransE, tensor-factorization-based model DistMult, and ComplEx as 
well as four knowledge hypergraph embedding model HypE, GETD, 
S2S, and RAM. The experimental results are presented in Table 4. 
Overall, HyConvE achieves fairly competitive performance on al-
most all metrics in almost all datasets. More importantly, HyConvE 
outperforms all other baseline models on MRR metrics which is of 
virtual importance in knowledge graph link prediction. Our pro-
posed HyConvE can efectively model binary relational facts and 
can be well generalized to binary knowledge graphs, but due to the 
lack of positional and semantic information contained in the binary 
relations, compared with the excellent performance of our model on 
the knowledge hypergraph datasets, the performance of HyConvE 
is not signifcantly improved compared with the baselines. 
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Table 3: Results on fxed arity datasets. The best results are in boldface and the second best are underlined. 

Model JF17K-3 JF17K-4 WikiPeople-3 WikiPeople-4 

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 

RAE [41] 
NaLP [15] 
n-CP [21] 

n-tucker [21] 
GETD [21] 
RAM [22] 

HyConvE (ours) 

0.505 
0.515 
0.669 
0.727 
0.725 
0.578 
0.729 

0.430 
0.431 
0.613 
0.664 
0.660 
0.505 
0.670 

0.644 
0.679 
0.801 
0.852 
0.858 
0.722 
0.861 

0.707 
0.719 
0.754 
0.786 
0.822 
0.743 
0.827 

0.636 
0.673 
0.701 
0.723 
0.761 
0.701 
0.770 

0.835 
0.805 
0.855 
0.851 
0.924 
0.845 
0.931 

0.239 
0.301 
0.313 
0.315 
0.363 
0.254 
0.318 

0.168 
0.226 
0.237 
0.236 
0.272 
0.190 
0.240 

0.379 
0.445 
0.476 
0.478 
0.545 
0.383 
0.482 

0.150 
0.342 
0.253 
0.335 
0.346 
0.226 
0.386 

0.080 
0.237 
0.163 
0.225 
0.229 
0.161 
0.271 

0.273 
0.540 
0.432 
0.536 
0.542 
0.367 
0.607 

Table 4: Results of Link Prediction on Knowledge Graph Datasets. The best results are in boldface and the second best are 
underlined. Experimental results with "-" are those results that were not presented in the original paper. All experimental 
results are obtained locally. 

Model FB15k-237 WN18RR JF17K WikiPeople FB-AUTO 

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 

TransE [5] 
DistMult[28] 
ComplEx [14] 
HypE [10] 
S2S [8] 

RAM [22] 
HyConvE (ours) 

0.294 - 0.561 
0.241 0.155 0.419 
0.253 0.158 0.428 
0.240 0.160 0.400 
0.348 0.256 0.540 
- - -

0.339 0.212 0.458 

0.226 - 0.501 
0.431 0.390 0.490 
0.440 0.411 0.512 
0.363 0.332 0.473 
0.498 0.455 0.577 
- - -

0.461 0.432 0.534 

0.276 0.167 0.495 
0.228 0.144 0.411 
0.308 0.219 0.498 
- - -

- - -

0.324 0.232 0.515 
0.338 0.246 0.525 

0.312 0.146 0.574 
0.275 0.193 0.388 
0.326 0.232 0.461 
- - -

- - -

0.408 0.313 0.568 
0.388 0.281 0.556 

0.313 0.132 0.562 
0.494 0.444 0.566 
0.487 0.442 0.568 
- - -

- - -

0.489 0.444 0.576 
0.493 0.445 0.572 

Table 5: Results of ablation study. The best results are in boldface. HyConvE-path1-only means to use only the 3D path of 
HyConvE when conducting experiments and HyConvE-path2-only means the other. 

Model JF17K WikiPeople FB-AUTO 

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 

HyConvE-path1-only 
HyConvE-path2-only 

HyConvE (ours) 

0.528 0.457 0.570 0.690 
0.102 0.054 0.094 0.168 
0.590 0.478 0.610 0.729 

0.323 0.227 0.344 0.478 
0.072 0.048 0.094 0.172 
0.352 0.275 0.388 0.501 

0.831 0.796 0.851 0.899 
0.145 0.082 0.164 0.212 
0.847 0.820 0.872 0.901 

5.4 Ablation study 
Ablation experiments are essential to confrm the necessity of 
two convolutional paths. We chose three knowledge hypergraph 
datasets JF17K, FB-AUTO, and WikiPeople, to perform ablation 
experiments with the same hyper-parameters. Experimental results 
are presented in Table 5. When only using path 2 of HyConvE for 
link prediction, we observe a decline in model performance on all 
metrics. Specifcally, on the JF17K dataset, using 3D convolutional 
path merely reduces the MRR by 6.2%, Hit@1 by 2.1%, Hit@3 by 
4.0%, and Hit@10 by 3.9%. While on the FB-AUTO dataset, the 
reduction of the evaluation metrics is relatively stable. This gap 
highlights the efectiveness of 2D convolution, in which 2D relation-
aware and position-aware flters are utilized successively to capture 
the intrinsic patterns and positional information in �-ary relations. 
As a comparison, we also design experiments to demonstrate the 
efectiveness of 3D convolutional path. Obviously, solely using the 
2D convolutional path presents a signifcant gap in a series of eval-
uation metrics compared with the complete HyConvE, where MRR 
is reduced from 0.847 to 0.145 in FB-AUTO, from 0.352 to 0.072 in 
JF17K, and from 0.590 to 0.102 in WikiPeople, respectively. Overall, 

the experimental results of the ablation study show that a slightly 
competitive performance can be obtained using only the 3D con-
volutional path. But its fnal link prediction results are still worse 
than the complete HyConvE model due to the lack of relation and 
position information, while only using the 2D convolutional path 
leads to a dramatic drop in all metrics. Therefore, it is obvious that 
only the combination of 2D and 3D convolution of HyConvE can 
achieve best performance. 

6 CONCLUSION 
In this paper, we propose a novel convolutional-based embedding 
model for knowledge hypergraph link prediction called HyConvE. 
Considering the drawbacks of existing approaches, we fully ex-
ploits the characteristics of convolutional neural networks in knowl-
edge hypergraph embedding. We use 3D convolution to extract the 
deeper interaction while preserving the translational property of 
entities and relations. While in the 2D convolutional process, we 
employee relation-specifc and position-specifc flters to capture 
the corresponding features. For future work, we will consider to 
leverage adjacent tuples for more structural information. 
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A CONVERGENCE CURVE 
To make the comparison more vivid, we visualize the performance 
of HyConvE, RAM, and HypE models on the validation set on two 
datasets, JF17K and FB-AUTO. 
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Figure 4: Comparison on the validation performance vs. train-
ing epoches of HyConvE, HypE, RAM in FB-AUTO. 
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Figure 5: Comparison on the validation performance vs. train-
ing epoches of HyConvE, HypE, RAM in JF17K. 

The results are shown in Figure 4 and 5, respectively. We can 
clearly observe that HyConvE outperforms the other models on all 
metrics throughout the validation process of both FB-AUTO and 
JF17K datasets. From Figure 4, it can be seen that RAM reaches 
convergence in the fastest number of iterations (about 100), and the 
model performance gradually decreases after 100 iterations, with 
its best MRR, Hit@1, Hit@3, and Hit@10 being 0.811, 0.775, 0.837, 
0.880, respectively. In contrast, the performance of HyConvE and 
HypE continues to grow steadily with the number of iterations, 
even after 100 iterations. 

B CONVOLUTION QUANTITATIVE ANALYSIS 
In addition to the regular link prediction task, we also conducted 
quantitative analysis experiments on the FB-AUTO dataset. The 
variables to be explored are: the reshaping dimension, the number 
of 3D flters, and the diferent activation functions, respectively. 
These experiments are conducted on the FB-AUTO dataset for 500 
epochs. (1) Figure 6(a) shows that model performance does not 
change signifcantly with diferent reshape dimensions. Note that 
in HyConvE the 3D convolution form is essential rather than the 
specifc image shape (reshape dimension). (2) Figure 6(b) shows 
that simply increasing the number of flters does not result in bet-
ter performance. When the number of flters is set to 6, the MRR 
reaches a maximum value of 0.837. (3) Figure 6(c) shows the most 
competitive activation function in HyConvE is Relu. This indicates 
that it is vital to select the proper activation function for training a 
good convolution model. 
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Figure 6: The efects of 3 convolution parameters. 
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Figure 7: Distribution of relational data of diferent arities in the WikiPeople dataset. 

C DATASET ANALYSIS data dominating (88.5%). Since the binary relational data contains 
less semantic and position information, our model is not as efective 

The distribution of relational data of diferent arities in the WikiPeo-

in the WikiPeople dataset compared with that in the JF17K and 
ple dataset is given in Figure 7. It can be seen that the distribution 

FB-AUTO datasets. 
of data in the WikiPeople dataset is uneven, with binary relational 
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